Low hysteresis shape memory ceramics designed by multi-mode modeling

  • Swain, MV Shape memory behavior in partially stabilized zirconia ceramics. Nature 322234–236 (1986).

    ADS CAS Article Google Scholar

  • Lai, A., Du, Z., Gan, CL & Schuh, CA Shape memory and small-scale superelastic ceramics. Science 3411505-1508 (2013).

    ADS CAS PubMed Google Scholar Article

  • Zeng, X., Du, Z., Schuh, CA & Gan, CL Enhanced shape memory and superelasticity in small volume ceramics: a perspective on control factors. MS Common. seven747–754 (2017).

    CAS Google Scholar Article

  • Du, Z., Zhou, X., Ye, P., Zeng, X. & Gan, CL Shape-memory actuation in aligned zirconia nanofibers for artificial muscle applications at elevated temperatures. ACS Appl. Nano-matter. 32156-2166 (2020).

    CAS Google Scholar Article

  • Lai, A. & Schuh, CA Direct electric field-induced phase transformation in paraelectric zirconia via electrical susceptibility shift. Phys. Rev. Lett. 12615701 (2021).

    ADS CAS Article Google Scholar

  • Pang, EL, Olson, GB & Schuh, CA The mechanism of thermal transformation hysteresis in ZrO2-CEO2 shape memory ceramic. Acta Mater. 213116972 (2021).

    CAS Google Scholar Article

  • Gu, H. et al. Explosive and weeping ceramics. Nature 599416–420 (2021).

    ADS CAS PubMed Google Scholar Article

  • Jetter, J. et al. Adjustment of crystallographic compatibility to improve shape memory in ceramics. Phys. Rev. Mater. 3093603 (2019).

    CAS Google Scholar Article

  • Song, Y., Chen, X., Dabade, V., Shield, TW & James, RD Enhanced reversibility and unusual microstructure of a phase-transformed material. Nature 50285–88 (2013).

    ADS CAS PubMed Google Scholar Article

  • Cui, J. et al. Combinatorial search for thermoelastic shape memory alloys with extremely low hysteresis width. Nat. Mater. 5286–290 (2006).

    ADS CAS PubMed Google Scholar Article

  • Zarnetta, R. et al. Identification of quaternary shape memory alloys with near-zero thermal hysteresis and unprecedented functional stability. Adv. Function Mater. 201917-1923 (2010).

    CAS Google Scholar Article

  • Pang, EL, Olson, GB & Schuh, CA Role of grain stress on martensitic transformation in cerium oxide doped zirconia. Jam. Ceram. Soc. 1041156-1168 (2020).

    Google Scholar article

  • Christian, JW, Olson, GB & Cohen, M. Classification of displacement transformations: what is a martensitic transformation? J.Phys. IV 5C8-3–C8-10 (1995).

    Google Scholar

  • Krauss, G. Martensite in steel: strength and structure. Mater. Science. Eng. A 273–27540–57 (1999).

    Google Scholar article

  • Bhattacharya, K. Microstructure of martensite: why it forms and how it gives rise to the shape memory effect (Oxford Univ. Press, 2003).

  • Kelly, PM & Francis Rose, LR Martensitic transformation in ceramics – its role in transformation hardening. Program. Master Sci. 47463–557 (2002).

    CAS Google Scholar Article

  • Wechsler, WS, Lieberman, DS & Read, TA On the theory of martensite formation. Trans. LOVE 1971503-1515 (1953).

    Google Scholar

  • Bowles, JS & Mackenzie, JK The crystallography of martensitic transformations I. Acta Metall. 2129-137 (1954).

    CAS Google Scholar Article

  • Mackenzie, JK & Bowles, JS The crystallography of martensitic transformations II. Acta Metall. 2138-147 (1954).

    CAS Google Scholar Article

  • Bowles, JS & Mackenzie, JK The crystallography of martensitic transformations III. Body-centered cubic to body-centered tetragonal transformations. Acta Metall. 2224-234 (1954).

    CAS Google Scholar Article

  • Ball, JM & James, RD Mixtures of fine phases as energy minimizers. Camber. Ration. Mech. Anal. 10013-52 (1987).

    MathSciNet MATH Google Scholar Article

  • Chen, X., Srivastava, V., Dabade, V. & James, RD Study of cofactor conditions: supercompatibility conditions between phases. J.Mech. Phys. Solids 612566-2587 (2013).

    ADS MathSciNet CAS MATH Google Scholar Article

  • Zhang, Z., James, RD, and Müller, S. Energy barriers and hysteresis in martensitic phase transformations. Acta Mater. 574332–4352 (2009).

    ADS CAS Article Google Scholar

  • Delville, R. et al. Study by transmission electron microscopy of phase compatibility in shape memory alloys with low hysteresis. Philos. Mag. 90177-195 (2010).

    ADS CAS Article Google Scholar

  • Meng, XL, Li, H., Cai, W., Hao, SJ & Cui, LS Mechanism of thermal cycle stability of Ti50.5Neither33.5Cu11.5pd4.5 shape memory alloy with near zero hysteresis. Scr. Mater. 10330–33 (2015).

    CAS Google Scholar Article

  • Pop-Ghe, P., Stock, N. & Quandt, E. Suppression of abnormal grain growth in K0.5N / A0.5NbO3: phase transitions and compatibility. Science. representing 919775 (2019).

    ADS CAS PubMed PubMed Central Article Google Scholar

  • Liang, YG et al. Adjustment of the hysteresis of a metal-insulator transition via network compatibility. Nat. Common. 113539 (2020).

    ADS CAS PubMed PubMed Central Article Google Scholar

  • Wegner, M., Gu, H., James, RD, and Quandt, E. Correlation between phase compatibility and efficient energy conversion in Zr-doped barium titanate. Science. representing ten3496 (2020).

    ADS CAS PubMed PubMed Central Article Google Scholar

  • Gopakumar, AM, Balachandran, PV, Xue, D., Gubernatis, JE & Lookman, T. Multi-objective optimization for materials discovery via adaptive design. Science. representing 83738 (2018).

    ADS PubMed PubMed Central Article Google Scholar

  • Chen, Y. et al. Machine Learning-Assisted Multi-Objective Optimization for Material Processing Parameters: A Case Study in Mg Alloy. J. Compd Alloys. 844156159 (2020).

    CAS Google Scholar Article

  • Kriven, WM, Fraser, WL & Kennedy, SW in Zirconia science and technology, ceramic progress Flight. 3 (eds. Heuer, AH & Hobbs, LW) 82–97 (American Ceramic Society, 1981).

  • Lukas, HL, Fries, SG & Sundman, B. Computational thermodynamics: the Calphad method (Cambridge Univ. Press, 2007).

  • Saenko, I., Ilatovskaia, M., Savinykh, G. & Fabrichnaya, O. Experimental investigation of phase relations and thermodynamic properties in ZrO2–TiO2 system. Jam. Ceram. Soc. 101386–399 (2018).

    CAS Google Scholar Article

  • Wang, C., Zinkevich, M. & Aldinger, F. The zirconia-hafnia system: DTA measurements and thermodynamic calculations. Jam. Ceram. Soc. 893751–3758 (2006).

    CAS Google Scholar Article

  • Park, J. et al. Thermodynamic balance of ZrO2-TiO2 system. Korean J. Ceram. seven11–15 (2001).

    Google Scholar

  • Xue, D. et al. Accelerated research of materials with targeted properties by adaptive design. Nat. Common. seven11241 (2016).

    ADS CAS PubMed PubMed Central Article Google Scholar

  • Trehern, W., Ortiz-Ayala, R., Atli, KC, Arroyave, R. & Karaman, I. Data-Driven Shape Memory Alloy Discovery Using the Intelligence Materials Selection Framework artificial intelligence (AIMS). Acta Mater. 228117751 (2022).

    CAS Google Scholar Article

  • Pang, EL, McCandler, CA & Schuh, CA Reducing cracking in polycrystalline ZrO2-CEO2 shape memory ceramics by fulfilling the conditions of the cofactor. Acta Mater. 177230-239 (2019).

    ADS CAS Article Google Scholar

  • Gu, H., Bumke, L., Chluba, C., Quandt, E. & James, RD Phase engineering and supercompatibility of shape memory alloys. Mater. Today 21265-277 (2018).

    CAS Google Scholar Article

  • Chluba, C. et al. Ultra low fatigue shape memory alloy films. Science 3481004-1007 (2015).

    ADS CAS PubMed Google Scholar Article

  • Bannister, MJ & Barnes, JM Solubility of TiO2 in ZrO2. Jam. Ceram. Soc. 69C269–C271 (1986).

    CAS Google Scholar Article

  • Evirgen, A. et al. Relationship between crystallographic compatibility and thermal hysteresis in high temperature NiTiHf and NiTiZr Ni-rich shape memory alloys. Acta Mater. 121374-383 (2016).

    ADS CAS Article Google Scholar

  • Miyazaki, S. in Shape memory alloys (eds Fremond, M. & Miyazaki, S.) 69–147 (Springer, 1996).

  • Kainuma, R., Takahashi, S. & Ishida, K. Ductile shape memory alloys of the Cu-Al-Mn system. J.Phys. IV 5961–966 (1995).

    CAS Google Scholar

  • Maki, T. Microstructure and Mechanical Behavior of Ferrous Martensite. Mater. Science. Forum 56–58157-168 (1990).

    Google Scholar

  • Balachandran, PV, Broderick, SR & Rajan, K. Identifying the “inorganic gene” for high-temperature piezoelectric perovskites through statistical learning. proc. R. Soc. A 4672271-2290 (2011).

    ADS CAS PubMed PubMed Central Article Google Scholar

  • Ramprasad, R., Batra, R., Pilania, G., Mannodi-Kanakkithodi, A. & Kim, C. Machine Learning in Materials Computation: Recent Applications and Prospects. npj Comput. Mater. 354 (2017).

    Article on Google Scholar Ads

  • Xue, D. et al. A computational approach to the transformation temperatures of NiTi-based shape memory alloys. Acta Mater. 125532-541 (2017).

    ADS CAS Article Google Scholar

  • Meredig, B. & Wolverton, C. Periodic Table Dissolution in Cubic Zirconia: Data Mining to Uncover Chemical Trends. Chem. Mater. 261985–1991 (2014).

    CAS Google Scholar Article

  • Xue, D. et al. Accelerated search for BaTiO3piezoelectric based vertical morphotropes using Bayesian learning. proc. Natl Acad. Science. UNITED STATES 11313301–13306 (2016).

    ADS CAS PubMed PubMed Central Article Google Scholar

  • Yuan, R. et al. Accelerated discovery of large electrostrains in BaTiO3piezoelectric based on active learning. Adv. Mater. 301702884 (2018).

    Google Scholar article

  • Comments are closed.